Logical and Branch Instruction

e ——



Introduction

> Logical instruction are those instruction which perform
logical operation such as

> AND,

> OR,

> XOR,

> Not etc.

\



Logical Instructions

* These instructions perform logical operations on data
stored in registers, memory and status flags.

* The logical operations are:
e AND
e OR
e XOR
* Rotate

 Compare

* Complement




> PSW (Program Status word)
> - Flag unaffected

> * affected

> 0 reset

> 1 set

> S Sign (Bit 7)

»Z Zero (Bit 6)

> AC Auxiliary Carry (Bit 4)

> P Parity (Bit 2)

> CY Carry (Bit 0)

\



AND, OR, XOR

Any 8-bit data, or the contents of register, or memory
location can logically have

 AND operation
* OR operation
* XOR operation
with the contents of accumulator.

The result is stored in accumulator.




Rotate

Each bit in the accumulator can be shifted either left or
right to the next position.




Compare

Any 8-bit data, or the contents of register, or memory
location can be compares for:

e Equality
e Greater Than

e LLess Than

with the contents of accumulator.

The result is reflected in status flags.




Complement

* The contents of accumulator can be complemented.

» Each o isreplaced by 1 and each 1is replaced by o.




Logical Instructions

CMP

R Compare register or memory with
M accumulator

* The contents of the operand (register or memory) are
compared with the contents of the accumulator.

* Both contents are preserved .

* The result of the comparison is shown by setting the
flags of the PSW as follows:




Logical Instructions

CMP

R Compare register or memory with
M accumulator

* if (A) < (reg/mem): carry flag is set
* if (A) = (reg/mem): zero flag is set
* if (A) > (reg/mem): carry and zero flags are reset.

» Example: CMP B or CMP M

10



Logical Instructions

CPI 8-bit data Compare immediate with accumulator

* The 8-bit data is compared with the contents of
accumulator.

* The values being compared remain unchanged.

* The result of the comparison is shown by setting the
tlags of the PSW as follows:

1



Logical Instructions

CPI 8-bit data Compare immediate with accumulator

* if (A) < data: carry flag is set
* if (A) = data: zero flag is set

* if (A) > data: carry and zero flags are reset

* Example: CPI 8gH

12



Logical Instructions

ANA Logical AND register or memory with

R
M accumulator

* The contents of the accumulator are logically ANDed with the contents
of register or memory.

* The result is placed in the accumulator.

¢ If the operand is a memory location, its address is specified by the
contents of H-L pair.

* S, Z, P are modified to reflect the result of the operation.

» (CYisresetand AC is set.
* Example: ANA B or ANA M.

13



Logical Instructions

ANI 8-bit data Logical AND immediate with accumulator

* The contents of the accumulator are logically ANDed with
the 8-bit data.

* The result is placed in the accumulator.

e S 7, P are modified to reflect the result.

* (Y isreset, AC is set.
* Example: ANI 86H.

14



Logical Instructions

ORA Logical OR register or memory with

R
M accumulator

* The contents of the accumulator are logically ORed with the contents of the register or
memory.

* The result is placed in the accumulator.
* If the operand is a memory location, its address is specified by the contents of H-L pair.
¢ S, Z, Pare modified to reflect the result.

* CY and AC are reset.

* Example: ORA B or ORA M.

15



Logical Instructions

ORI 8-bit data Logical OR immediate with accumulator

* The contents of the accumulator are logically ORed with
the 8-bit data.

¢ The result is placed in the accumulator.

¢ S, 7, P are modified to reflect the result.
* CY and AC are reset.
* Example: ORI 86H.

16



Logical Instructions

XRA Logical XOR register or memory with

R
M accumulator

* The contents of the accumulator are XORed with the contents of
the register or memory.

* The result is placed in the accumulator.

¢ If the operand is a memory location, its address is specified by
the contents of H-L pair.

» S, 7, P are modified to reflect the result of the operation.
¢ CY and AC are reset.

* Example: XRA B or XRA M.

17



Logical Instructions

XRI 8-bit data XOR immediate with accumulator

* The contents of the accumulator are XORed with the
8-bit data.

* The result is placed in the accumulator.

» S, Z, P are modified to reflect the result.
» CY and AC are reset.
» Example: XRI 86H.

18



RAL None Rotate accumulator left through carry

* Each binary bit of the accumulator is rotated left by one
position through the Carry flag.

* Bit D7 is placed in the Carry flag, and the Carry flag is

placed in the least significant position Do.

» CY is modified according to bit D7.
» S, 7, P AC are not affected.
* Example: RAL.

19



RAR None Rotate accumulator right through carry

* Each binary bit of the accumulator is rotated right by one
position through the Carry flag.

* Bit Do is placed in the Carry flag, and the Carry flag is

placed in the most significant position D7.

* CY is modified according to bit Do.
* S 7, P AC are not affected.
* Example: RAR.

20



" circular Left shift

RLC None Rotate accumulator left

* Each binary bit of the accumulator is rotated left by one
position.

* Bit D7 is placed in the position of Do as well as in the Carry
flag.

* CY is modified according to bit D7.
e S, 7, P AC are not affected.
* Example: RLC.

21



ttttttttttttttttttttttttt

position.




Logical Instructions

CMA None Complement accumulator

* The contents of the accumulator are complemented.

* No flags are affected.
* Example: CMA.

23



Logical Instructions

CMC None Complement carry

* The Carry tlag is complemented.

* No other flags are affected.

* Example: CMC.

24



Logical Instructions

STC None Set carry

* The Carry flag is set to 1.

* No other flags are affected.

» Example: STC.

25



Branching Instructions

* The branching instruction alter the normal sequential
flow.

* These instructions alter either unconditionally or
conditionally.

26



Branching Instructions

JMP 16-bit address Jump unconditionally

* The program sequence is transferred to the memory
location specified by the 16-bit address given in the
operand.

» Example: JMP 2034 H.

27



Branching Instructions

Jx 16-bit address Jump conditionally

* The program sequence is transferred to the memory
location specified by the 16-bit address given in the
operand based on the specified flag of the PSW.

» Example: JZ 2034 H.

28



Jump Conditionally

JC Jump if Carry CY=1
JNC Jump if No Carry CY=o0
JP Jump if Positive S=0
M Jump if Minus =1
JZ Jump if Zero Z=1
JNZ Jump if No Zero Z=0
JPE Jump if Parity Even P=1

JPO Jump if Parity Odd P=o




Branching Instructions

CALL 16-bit address Call unconditionally

* The program sequence is transferred to the memory
location specified by the 16-bit address given in the
operand.

* Before the transfer, the address of the next instruction after
CALL (the contents of the program counter) is pushed onto
the stack.

* Example: CALL 2034 H.

30



Branching Instructions

RET None Return unconditionally

* The program sequence is transferred from the
subroutine to the calling program.

* The two bytes from the top of the stack are copied into
the program counter, and program execution begins at
the new address.

» Example: RET.

31



Control Instructions

NOP None No operation

» No operation is performed.

» The instruction is fetched and decoded but no
operation is executed.

» Example: NOP

32



Control Instructions

HLT None Halt

* The CPU finishes executing the current instruction
and halts any further execution.

* An interrupt or reset is necessary to exit from the halt
state.

* Example: HLT

33



Control Instructions

DI None Disable interrupt

* The interrupt enable flip-flop is reset and all the
interrupts except the TRAP are disabled.

* No flags are affected.

» Example: DI

34



Control Instructions

EI None Enable interrupt

* The interrupt enable flip-flop is set and all interrupts
are enabled.

* No flags are affected.

» This instruction is necessary to re-enable the
interrupts (except TRAP).

* Example: EI

35



Summary — Data transfer

> MOV Move

> MVI Move Immediate

> LDA Load Accumulator Directly from Memory

> STA Store Accumulator Directly in Memory

> LHLD Load H & L Registers Directly from
Memory

> SHLD Store H & L Registers Directly in Memory

\

36



Summary Data transfer

> An 'X' in the name of a data transfer instruction implies that it deals
with a register pair (16-bits);

> LXI Load Register Pair with Immediate data
* LDAX  Load Accumulator from Address in Register Pair
> STAX Store Accumulator in Address in Register Pair

> XCHG Exchange H & L with D & E
> XTHL Exchange Top of Stack with H & L

37




Summary - Arithmetic Group

> Add, Subtract, Increment / Decrement data in registers or memory.

* ADD Add to Accumulator
» ADI  Add Immediate Data to Accumulator
> ADC Add to Accumulator Using Carry Flag
» ACI  Add Immediate data to Accumulator Using Carry
> SUB Subtract from Accumulator
> SUI  Subtract Immediate Data from Accumulator
> SBB Subtract from Accumulator Using Borrow (Carry) Flag
> SBI  Subtract Immediate from Accumulator
Using Borrow (Carry) Flag
> INR  Increment Specified Byte by One
* DCR Decrement Specified Byte by One
> INX  Increment Register Pair by One
> DCX Decrement Register Pair by One
> DAD Double Register Add; Add Content of Register Pairto H & L

Register Pair

38



Summary Logical Group

> This group performs logical (Boolean) operations on data in
registers and memory and on condition flags.

> These instructions enable you to set specific bits in the

accumulator ON or OFF.
> ANA Logical AND with Accumulator
> ANI Logical AND with Accumulator Using Immediate
Data
> ORA Logical OR with Accumulator
> OR Logical OR with Accumulator Using Immediate
Data

> XRA Exclusive Logical OR with Accumulator
> XRI Exclusive OR Using Immediate Data

39



> The Compare instructions compare the content of an 8-bit value with the
contents of the accumulator;

> CMP Compare
> CPI Compare Using Immediate Data

> The rotate instructions shift the contents of the accumulator one bit
position to the left or right:

> RLC Rotate Accumulator Left
> RRC Rotate Accumulator Right
> RAL Rotate Left Through Carry

* RAR Rotate Right Through Carry
> Complement and carry flag instructions:
> CMA Complement Accumulator

> CMC Complement Carry Flag
STC Set Carry Flag




Summary - Branch Group

> Unconditional branching

- JMP Jump
- CALL Call
- RET Return

> Conditions
- NZ Not Zero (Z =0)
- 7 Zero (Z =1)
- NC No Carry (C=0)
- C Carry (C=1)
- PO Parity Odd (P = 0)
- PE Parity Even (P =1)
- P Plus (S =0)
- M Minus (S=1)

nditional branching

41



Summary - Stack

* PUSH  Push Two bytes of Data onto the Stack
> POP Pop Two Bytes of Data off the Stack

* XTHL  Exchange Top of Stack with H & L

» SPHL  Move content of H & L to Stack Pointer

\

42



I/0 instructions

>IN Initiate Input Operation
»OUT Initiate Output Operation

\

43



Summary -Machine Control instructions

> EI Enable Interrupt System
> DI Disable Interrupt System
> HLT Halt

> NOP No Operation

\

44



scope

> Scope 1n logical instruction 1s not so large there are
limitation 1n logical instruction b’cos it 1s the one
type of instruction so scope 1s compress then the
whole field of instruction.

\



	Slide 1
	Introduction
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Summary – Data transfer
	Summary Data transfer
	Summary - Arithmetic Group
	Summary Logical Group
	Slide 40
	Summary - Branch Group
	Summary - Stack
	I/0 instructions
	Summary -Machine Control instructions
	scope

